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Abstract. We study a rotation-invariant Majorana fermion model in one dimension using
diagrammatic perturbation theory and numerical diagonalization of small systems. The model
is inspired by a Majorana representation of the antiferromagnetic spin-1

2 chain, and it is similar
in form to thet–J model of electrons, except that the Majorana fermions carry spin 1 and Z2

charge. We discuss the implications of our results for the low-energy excitations of the spin-1
2

chain. We also discuss a generalization of our model from three species of Majorana fermions
to N species; the SO(4) symmetric model is particularly interesting.

1. Introduction

In a recent paper [1], we used a representation of spin1
2 in terms of three species of

Majorana fermions [2, 3] in order to study the antiferromagnetic spin-1
2 chain. The Majorana

representation has an advantage over other representations (such as the Schwinger boson or
fermion representations [4, 5]) in that one does not have to impose a constraint on the total
particle number at each site (see however reference [6]). It is also rotation invariant unlike
the ‘drone fermion’ and the Holstein–Primakoff boson representations [7, 8].

For the spin-12 chain with isotropic nearest-neighbour interactions, the Majorana
representation followed by a rotation-invariant Hartree–Fock (H–F) analysis [1] leads to a
picture of the low-energy excitations of the spin-1

2 chain which is qualitatively similar to that
obtained by other methods [9–11]. In particular, we find that the excitations are described
by a two-parameter continuum in the(q, ω) space; for each momentumq, the low-energy
spectrum has a range of energiesω as if the excitations are made up of two particles (called
‘spinons’). We also get reasonable dynamic structure functions and susceptibilities at all
temperatures if we introduce some phenomenological structure functions. We should note
however that our Majorana fermions carry spin 1 unlike the ‘standard’ spinons with spin1

2.
The positive features of the Majorana representation encourage us to study the

fluctuations about the H–F state of the spin-1
2 chain. More generally, it seems to be

interesting to examine a strongly correlated Majorana fermion model in one dimension
and contrast its properties with much better-studied electronic systems like the Hubbard
model. Such an analysis would also be useful for other possible applications of Majorana
fermions such as the Kondo problem [2]. In this paper, we therefore study thet–J model
with Majorana fermions; the electronic version of this model has played a major role in
theories of strongly correlated systems like the high-temperature superconductors.
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The outline of our paper is as follows. In section 2, we briefly recall the Majorana
representation of spin12 and the H–F analysis of the antiferromagnetic chain given in our
earlier paper [1]. This motivates a study of thet–J model which is introduced in section 3.
We present the Feynman rules for the propagator and the vertex, and compute the one-loop
correction to the propagator. In section 4.1, we compute the two-loop correction to the
propagator; we find the remarkable result that the on-shell correction is of the same form as
the tree-level dispersion relation. In section 4.2, we compute the two-loop correction to the
dynamic structure function. The result can be used to perturbatively improve the power law
of the equal-time correlation function and the ground-state energy of the spin-1

2 chain from
the values obtained at the H–F level. In section 4.3, we study the one-loop correction to the
vertex. In section 5, we discuss the symmetries of thet–J model and numerically analyse
the spectrum of small systems using exact diagonalization. In section 6, we generalize our
model from SO(3) to SO(N), and we briefly examine the SO(4) case which is particularly
interesting. Finally, in section 7, we summarize our understanding of thet–J model.

2. Majorana fermions and the antiferromagnetic spin-12 chain

At each siten, the spin operatorsSn = σn/2 can be written in terms of the Majorana
operatorsφn as [1, 2, 3]

σxn = −iφynφ
z
n σ yn = −iφznφ

x
n σ zn = −iφxnφ

y
n . (1)

(We set Planck’s constant equal to 1.) The Hermitian operatorsφan (with a = x, y, z) satisfy
the anticommutation relations

{φam, φbn} = 2δmnδab. (2)

Note that there is a local Z2 gauge invariance, since changing the sign ofφn does not
affect Sn. We will therefore say thatφn (or any odd power of it) carries a Z2 charge.
Let us define the trilinear and Hermitian objectψn = −iφxnφ

y
nφ

z
n. Then [σam,ψn] = 0, and

{ψm,ψn} = 2δmn. Under rotations,φn andσn transform like vectors (spin-1 objects), while
ψn remains invariant. On the other hand,ψn carries a Z2 charge whileσn is Z2 neutral.
Thus we have two different composite operators,σn andψn, which carry spin and charge
respectively.

For a system withL sites, it is known that the minimum possible dimension which
allows a representation of the form given in equations (1) and (2) is 2L+[L/2], where [L/2]
denotes the largest integer less than or equal toL/2. ForL sites with a spin-12 object at
each site, the Hilbert space clearly has dimension 2L. Thus the Majorana representation of
spin-1

2 objects requires us to enlarge the space of states; the complete Hilbert space of states
is given by a direct product of a ‘physical’ space and an ‘unphysical’ one. The operators
σn act only on the physical states, while theφn mix up different unphysical states.

We now consider the Heisenberg antiferromagnetic chain with the Hamiltonian

H = J
∑
n

Sn · Sn+1 (3)

where J > 0. We use periodic boundary conditionsSL+1 = S1. The spectrum of (3)
is exactly solvable by the Betheansatz; the ground-state energy per site for largeL is
given by E0/L = (− ln 2 + 1/4)J = −0.4431J . The lowest excitations are known to
be fourfold degenerate, consisting of a triplet (S = 1) and a singlet (S = 0) [10]. The
excitation spectrum is described by a two-parameter continuum in the(q, ω) space, where
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−π < q 6 π . The lower boundary of the continuum is described by the des Cloiseaux–
Pearson relation [9]

ωl(q) = πJ

2
|sinq| (4)

while the upper boundary is given by

ωu(q) = πJ
∣∣∣∣sin

q

2

∣∣∣∣. (5)

We can understand this continuum by thinking of these excitations as being made up of two
spin-1

2 objects (‘spinons’) with the dispersion [10]

ωs(q) = πJ

2
sinq (6)

where 0< q < π . A triplet (or a singlet) excitation with momentumq is made up of
two spinons with momentaq1 and q2, such that 0< q1 6 q2 < π , q = q1 + q2, and
ω(q) = ωs(q1)+ ωs(q2).

The Majorana analysis of this system proceeds as follows [1]. We write (3) in terms of
Majorana operators and then perform a H–F decomposition. Thus

H = −J
4

∑
n

(φxnφ
y
nφ

x
n+1φ

y

n+1+ cyclic permutations of(x, y, z))

' J

4

∑
n

[φxnφ
x
n+1〈φynφyn+1〉 + 〈φxnφxn+1〉φynφyn+1

− 〈φxnφxn+1〉〈φynφyn+1〉 + cyclic permutations of(x, y, z)]. (7)

For a rotation- and translation-invariant H–F analysis, we haveg = i〈φanφan+1〉, whereg has
the same value for alln and a = x, y, z. (Our earlier paper [1] follows slightly different
conventions.) The Fourier expansion ofφn is defined as

φan =
√

2

L

∑
0<q<π

[baqeiqn + b†aqe−iqn] (8)

where {baq, b†bq ′ } = δabδqq ′ . We will work with antiperiodic boundary conditions forφan
andevenvalues ofL in order to eliminate modes withq equal to 0 andπ . In equation (8),
q = 2π(p − 1/2)/L, with p = 1, 2, . . . , L/2. In the limitL→∞, we get

H =
∑
a

∑
0<q<π

ωqb
†
aqbaq + 3LJ

(
g2

4
− g

π

)
(9)

where the Majorana fermions have the dispersionωq = v sinq, with v = 2gJ . The value of
g is determined self-consistently to beg = 2/π . The H–F ground-state energy is therefore

E0HF

L
= − 3

π2
J = −0.3040J (10)

which is greater than the exact value mentioned above. The ‘spinon’ spectrum has the same
form as in (6), except that we getv = 4J/π instead ofvexact = πJ/2.

We can go on to show that the Majorana fermion has spin 1, and a two-fermion state
therefore hasS = 0, 1, or 2 in general. However, the state created bySzq =

∑
n S

z
ne
−iqn,

where 0< q < π , has the form

Szq |0〉 = −i
∑

π−q<k<π
b
†
x,kb

†
y,q−k|0〉 (11)
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and hasS = 1. We thus obtain a two-parameter continuum of triplet excitations as in
equations (4) and (5), with a prefactor 4/π instead ofπ/2.

Finally, the equal-time two-spin correlation function is given by

Gn ≡ 〈0|Sn · S0|0〉 =


3

4
for n = 0

− 3

2π2n2
[1− (−1)n] for n 6= 0.

(12)

This does not agree with the correct asymptotic behaviour ofGn which is known to oscillate
as (−1)n/n. In particular, the H–F static structure functionS(q) = ∑n Gne−iqn does not
diverge asq → π in contrast to the correctS(q) which has a logarithmic divergence atπ .
(Note that we do get

∑
n Gn = 0, as expected for a singlet ground state.) We will show

in section 4.2 that two-loop effects effectively reduce the power governing the asymptotic
decay from 2 to 1.75, which is somewhat closer to the correct value of 1. At the same
time, the ground-state energy per site is reduced from−0.3040J to −0.3338J , which is
also closer to the Betheansatzvalue of−0.4431J .

One can now consider fluctuations about the H–F ground state by doing loop
calculations. However, instead of studying only the Hamiltonian (7) as is sufficient for
the spin-12 chain, it is useful to study a more general model which has the same structure
but has two parameters instead of one; the parameters are a hopping amplitudet and a
quartic interactionJ . This is the subject of the following sections.

Figure 1. The propagator and vertex for the Majoranat–J model.

3. The Majorana t–J model

We consider the Hamiltonian

H = −it

4

∑
a,n

φanφ
a
n+1−

J

4

∑
n

(φxnφ
y
nφ

x
n+1φ

y

n+1+ cyclic permutations of(x, y, z)) (13)

with t chosen to be positive, and we perform a perturbative expansion with the quartic
term. To begin the diagrammatic analysis, we generalize the Fourier expression (8) to the
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interaction picture field

φan(t) =
√

2

L

∑
−π<q<π

φaqei(qn−ωq t) (14a)

where

φaq =
{
baq if 0 < q < π

b
†
a,−q if −π < q < 0

(14b)

with

ωq = t sinq (15)

for all q. Then we obtain the propagator

〈0|T φaq (t)φb−q(0)|0〉 ≡ iGab(q, t) = iδabG(q, t) (16a)

and

iG(q, ω) = i
∫ ∞
−∞

dt G(q, t)eiωt = i

ω − ωq + iηθ(q)
(16b)

whereη is infinitesimal and positive, andθ(q) = 1 if 0 < q < π and−1 if −π < q < 0.
For loop calculations, it is convenient to define a propagator even for values ofq not lying
in the range [−π, π ]. To do this, we first define a momentumq = q + 2nπ where the
integern is chosen such that−π < q 6 π . Then wedefineG(q, ω) = G(q, ω) using (16).
The propagator is shown by a solid line in figure 1(a).

The vertex shown in figure 1(b) is obtained by Fourier transforming the quartic term in
(13). The Feynman rule for the vertex is found to be

i0(a1, q1, ω1; a2, q2, ω2; a3, q3, ω3; a4, q4, ω4)

= i(2π)2δP

(∑
i

qi

)
δ

(∑
i

ωi

)
4J cos

(
1

2

∑
i

qi

)
×
[
δa1a2δa3a4 sin

(
1

2
(q1− q2)

)
sin

(
1

2
(q3− q4)

)
+ cyclic permutations of(a2, q2; a3, q3; a4, q4)

]
(17)

where the spin indicesa1 to a4 can take the valuesx, y, z, and the momentaq1 to q4 need
not lie in the range [−π, π ]. The periodicδ-function is defined as

δP (q) =
∞∑

n=−∞
δ(q − 2nπ). (18)

The expression in (17) is antisymmetric under the exchange of any two labels(ai, qi, ωi)

and(aj , qj , ωj ); it also vanishes if all of the indicesai are equal.
We now compute the simplest loop effect, namely, the one-loop contribution to the

propagator shown in figure 2(a). It is called a one-loop contribution because there is one
energy–momentum that we have to integrate over. To this order inJ , the self-energy is
found to have the energy-independent form

6(1)(q, ω) = 4J

π
sinq (19)
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Figure 2. The one- and two-loop contributions to the propagator.

where the superscript(1) denotes the order of the loop. Thus the dispersion relation changes
from (15) to

ωq =
(
t + 4J

π

)
sinq. (20)

We will therefore use the expression (20) in the propagator (16) for all of the loop
calculations below. Note that we can recover the antiferromagnetic spin-1

2 chain by setting
t = 0 in (13); equation (20) then gives us precisely the H–F dispersion discussed in section 2.

4. Loop calculations

4.1. The two-loop contribution to the propagator

We will now compute the two-loop diagram shown in figure 2(b). The two energy
integrations can be easily carried out using the identities∫ ∞

−∞

dω

2π

1

ω − α + iη

1

ω − β − iη
= i

β − α + iη∫ ∞
−∞

dω

2π

1

ω − α + iη

1

ω − β + iη
= 0

(21)

if α andβ are real.
We then obtain the following expression for the self-energy:

6(2)(q, ω) = −4J 2

π2

∫ π

−π

∫ π

−π
dl1 dl2

sin2[q + 1
2(l1+ l2)] sin2[ 1

2(l1− l2)]
ω + ωl1 + ωl2 − ωl1+l2+q ± iη

(22)

where we take the upper sign(iη) in the denominator if

−π < l1, l2 < 0 and 0< l1+ l2+ q < π

and we take the lower sign(−iη) if

0< l1, l2 < π and − π < l1+ l2+ q < 0.
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It is clear at this point that

6(2)(−q,−ω) = 6(2)(q, ω). (23)

This property of the self-energy can be shown to be true to all orders inJ . Furthermore,
6(2)(π−q, ω) = 6(2)(q, ω). Now let us choose 0< q < π and find the on-shell dispersion
relation to orderJ 2, namely,

ω =
(
t + 4J

π

)
sinq +6(2)(q, ω). (24)

To this order inJ , we can setω = (t + 4J/π) sinq in the second term on the right-hand
side of (24) or, equivalently, in the denominator of (22). We then find that the denominator
in (22) never crosses zero in the given ranges ofl1 and l2; thus we can drop the±iη and
the integrals are purely real. We thennumericallyfind that (22) has the remarkably simple
form

6(2)

(
q,

(
t + 4J

π

)
sinq

)
= −0.467

4J 2

π2(t + 4J/π)
sinq (25)

for all q in the range [0, π ]. Thus the dispersion relation to orderJ 2 is

ω =
(
t + 4J

π
− 0.189

J 2

t + 4J/π

)
sinq. (26)

We find it surprising that the form of the dispersion relation remains the same even at the
two-loops level, and suspect that this may be true to all orders inJ .

4.2. The two-loop contribution to dynamic structure function

We will compute the two-spin correlation function

Szz(q, ω) ≡ Fourier transform of〈0|Szn(t)Sz0(0)|0〉 (27)

to two loops. To any order, we can show that this function remains invariant under
(q, ω) → (−q,−ω). We can obtain the static structure function (equal-time correlation
function) Szz(q) by integrating:

Szz(q) =
∫ ∞
−∞

dω

2π
Szz(q, ω)e

iωt (28)

and taking the limitt → 0+. This is a function of|q|, so it is sufficient to compute it for
0< q < π .

The lowest-order result for the correlation function is obtained from the one-loop
diagram in figure 3(a). After carrying out the energy integration, we obtain

S(1)zz (q, ω) =


i

2π

∫ π

−π
dl1

1

ω − ωl1 − ωq−l1 + iη
if 0 < l1, q − l1 < π

i

2π

∫ π

−π
dl1

1

ωl1 + ωq−l1 − ω + iη
if −π < l1, q − l1 < 0 .

(29)

For−π < q < π , we then obtain

S(1)zz (q) =
|q|
2π
. (30)

The Fourier transform of this gives the spatial correlation function in (12).



7970 D Sen and B S Shastry

Figure 3. The one- and two-loop contributions to the
two-spin correlation function.

Figure 4. The one-loop contributions to the vertex.

At the two-loops level, we have to compute the diagram given in figure 3(b). After
performing the two energy integrations, we arrive at the expression

S(2)zz (q, ω) =
iJ

4π2

∫ π

−π

∫ π

−π
dl1 dl2 sin

[
1

2
(l1+ l2)

]
sin

[
q + 1

2
(l1+ l2)

]

×



1

(e1− iη)(e2− iη)
if 0 < l1, l2,−(l1+ q),−(l2+ q) < π

1

(e1+ iη)(e2+ iη)
if 0 < −l1,−l2, l1+ q, l2+ q < π

−1

(e1− iη)(e2+ iη)
if 0 < l1,−l2,−(l1+ q), l2+ q < π

−1

(e1+ iη)(e2− iη)
if 0 < −l1, l2, l1+ q,−(l2+ q) < π

(31a)

where

e1 = ω + ωl1 − ωl1+q (31b)

e2 = ω + ωl2 − ωl2+q . (31c)

We then get, for 0< q < π ,

S(2)zz (q) = −
J

2π2(t + 4J/π)
I (q)

I (q) =
∫ q

0

∫ q

0
dl1 dl2

cos[12(l1+ l2)] cos[q − 1
2(l1+ l2)]

sinl1+ sinl2+ sin(q − l1)+ sin(q − l2) .
(32)

We find analytically thatI (q) vanishes asq → 0, and numerically that∫ π

0
dq I (q) = 0. (33)

These are consistency checks following from the facts that the ground state is a singlet and
that the two-spin correlation at the same spatial point is equal to 3/4; we already know that
the one-loop correlation in equation (12) satisfies these checks.
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We now use equation (32) to derive some interesting numbers relating to the
antiferromagnetic spin-1

2 chain. First of all, we can show analytically thatI (q) is finite
for all q, while I ′(q) diverges logarithmically atq = π with coefficient 1; that is,

I ′(q) = ln |π − q| + nondivergent terms

I (q) = I (π)+ (q − π) ln |π − q| asq → π.
(34)

At long distances, the leading term in the spatial correlation functionGn = 3〈0|SznSz0|0〉
takes the form∫ π

0

dq

π
I (q) cos(qn) = − (−1)n

πn2
ln n+O

(
1

n2

)
asn→∞. (35)

After adding this to the one-loop result, we see that the long-distance correlation function
has an oscillatory term going as

Gn = (−1)n
3

2π2n2

[
1+ J

π(t + 4J/π)
ln n+ · · ·

]
(36)

where the dots indicate contributions from more than two loops. If we nowassumethat
these higher-order terms come with the right numerical factors to turn the sum into an
exponential series, we see that the long-distance correlation decays as(−1)nn−α, where the
exponentα goes as

α = 2− J

π(t + 4J/π)
(37)

to orderJ . For the spin-12 chain, we must sett = 0; this givesα = 1.75 to this order.
The second interesting number for the spin-1

2 chain which we can derive from (32) is
the ground-state energy per site; this is equal toJG1 for t = 0. On numerically integrating
(32), we find the two-loop result

G
(2)
1 = −

3

8π2

∫ π

0
dq I (q) cosq = −0.0298. (38)

On adding this to the one-loop result, we get the value−0.3338J .

4.3. The one-loop contribution to the vertex

For completeness, we will mention the one-loop correction to the vertex. Let us choose two
of the spin indices to bex and two to bey. From (17), the zero-loop form of the vertex is
given by(2π)2 times the energy–momentum-conservingδ-functions multiplied by

i0(0) = i 4J cos

(
1

2

∑
i

qi

)
sin

(
1

2
(q1− q2)

)
sin

(
1

2
(q3− q4)

)
. (39)

The one-loop correction i0(1)(x, q1, ω1; x, q2, ω2; y, q3, ω3; y, q4, ω4) is given by the sum
of the three diagrams shown in figure 4. On carrying out the energy integration, we find
that the contribution of figure 4(a) is

−i 8J 2 cos

(
1

2

∑
i

qi

)
sin

(
1

2
(q1− q2)

)
sin

(
1

2
(q3− q4)

)∫ π

−π

dl

2π
sin2

[
l + 1

2
(q1+ q2)

]

×


1

ωl+q1+q2 − ωl − ω1− ω2+ iη
if 0 < l,−(l + q1+ q2) < π

1

ωl + ω1+ ω2− ωl+q1+q2 + iη
if 0 < −l, l + q1+ q2 < π .

(40)
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The contribution of figure 4(b) can be obtained from equation (40) by changing the
coefficient 8 to 16 and cyclically replacingq2 → q3 → q4 → q2 and ω2 → ω3. The
contribution of figure 4(c) can be obtained from equation (40) by changing 8 to 16 and
replacingq2→ q4→ q3→ q2 andω2→ ω4.

5. Symmetries and numerical results

5.1. Numerical results

We can numerically study the spectrum of our model by means of the exact diagonalization
of small systems. To do that, it is useful to know all the symmetries of the model. Some of
the conserved quantum numbers are the total spinS2 and any one of its components, say,
Sz, the total momentumq modulo 2π , and parityP = ±1 which arises from the symmetry
of the Hamiltonian under

φn→ (−1)nφL+1−n. (41)

In addition, there is a Z2 quantum number defined as follows. Consider

0 =


ψ1ψ2 · · · ψL if

L

2
is even

iψ1ψ2 · · · ψL if
L

2
is odd

(42)

satisfying0† = 0−1 = 0. This operator anticommutes with each of theφn and therefore
commutes with the Hamiltonian (13). Hence the eigenvalue of0 = ±1 is a good quantum
number. We willdefine0 = 1 for the ground state of thet–J model; we can ensure this
by introducing a minus sign in the definition (42) if necessary.

There are a few selection rules and energy degeneracies connecting some of these
quantum numbers. We will see below that the ground state hasq = 0, and we choose
0 = 1. We can now obtain various excited states by acting on it with a certain number
of Majorana operators as defined in (8). Each such operator carries a momentumq which
is an odd multiple of π/L, and0 = −1. It is therefore clear that all states must have
0 = exp(iqL); this eigenvalue is 1 or−1 depending on whether the state has an even or
odd number of Majorana fermions. Secondly, Majorana operators with momentaq and
π − q carry the same energy by parity. Thus states with an odd number of Majorana
operators, i.e. with0 = −1, must have an energy degeneracy between total momenta equal
to q andπ − q. States with0 = 1 must have an energy degeneracy between momentaq

and−q.
For a numerical study, it is more convenient to rewrite (13) in the form

H = 1

4

L∑
n=1

(−itψnψn+1+ J )σn · σn+1. (43)

As mentioned in section 2, we use periodic boundary conditions forσn and antiperiodic
ones forψn. We diagonalizeH in a basis consisting of a direct product of states of the
form |9i〉 ⊗ |αj 〉, such that the operatorsσn andψn act only on|9i〉 and |αj 〉 respectively.
In order to study the spectral flow from the pure-J model to the pure-t model, we introduce
a parameterx lying between 0 and 1, such thatJ = 4(1− x) and t = 4x. Thus

H(x) =
N∑
n=1

(1− x − ixψnψn+1)σn · σn+1. (44)
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Figure 5. Energies forL = 4. x = 0 and 1 denote the pure-J and pure-t models respectively.
Parts (a)–(c) show all of the energies for totalS = 0, 1, 2, respectively. The curves marked a–f
are discussed in the text.

We have obtained the eigenvalues of (44) forL = 4 and 6, for 11 equally spaced values ofx

from 0 to 1. All of the conserved quantities discussed above have discrete eigenvalues; hence
these remain invariant asx changes. Numerically, we only kept track of the eigenvalues of
total spinS = 0, 1, . . . , L/2 and totalSz = 0; whenever necessary, the eigenvaluesq, P ,
and0 can be deduced by continuity arguments from the exact analytical solutions known at
x = 1. The energy eigenvalues in eachS-sector are shown in figures 5(a)–5(c) forL = 4,
and the lowest few eigenvalues in eachS-sector are shown in figures 6(a)–6(d) forL = 6.
We should remark here that the degeneracies of the various levels have not been shown,
and that we have not distinguished between true crossings and avoided crossings in these
figures.

To get a feeling for the elementary excitations, let us discuss the six low-lying states
marked a–f on the figures; these include the three lowest states a, b, c with S = 0 in figures
5(a) and 6(a), the two lowest states d, e with S = 1 in figures 5(b) and 6(b), and the lowest
state f withS = 2 in figures 5(c) and 6(c). The energy dependence of these six states can
be seen to be quite similar forL = 4 and 6. The ground state, marked a, is unique for all
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Figure 6. The energy forL = 6. Parts (a)–(d) show the lowest 20 energies forS = 0, 1, 2, and
all the energies forS = 3, respectively. The curves marked a–f are discussed in the text.

values ofx (exceptx = 0 where it has a degeneracy of 2L/2); it has spinS = 0, momentum
q = 0, and0 = 1. The next two states in theS = 0 sector, marked b and c, have0 = 1
and−1 with degeneracies of 1 and 2 respectively; these two states exhibit a true level
crossing betweenx = 0 and 1, so b is lower than c nearx = 1 and vice versa nearx = 0.
The two states withS = 1, marked d and e, have0 = −1 and 1 with degeneracies of 2
and 1 respectively. These also exhibit a true level crossing, with d being lower than e near
x = 1 and vice versa nearx = 0. Finally, the state withS = 2 marked f has0 = 1 and is
nondegenerate.

The composition of these six states can be easily understood at the noninteracting point
x = 1. At this point, the ordering of energies is given by a< d < b = e = f < c. The
ground state a is the empty state. State d contains a single Majorana fermion with spin
1, with momentum equal to eitherπ/L or π − π/L; hence the double degeneracy. The
state b contains two fermions in a spin-0 combination, one with momentumπ/L and the
other with momentumπ − π/L; hence the total momentum isπ . States e and f have the
same composition as b, except that they have spins 1 and 2 respectively. State c has three
fermions in a spin-0 combination, two with momentaπ/L andπ −π/L, and the third with
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momentum either 3π/L or π − 3π/L; the double degeneracy is due to the twofold choice
for the third fermion. If we now move fromx = 1 to x = 0, all of these states get ‘dressed’
with an even number of fermions. Atx = 0, the energy ordering is a= b= c< d= e< f.

Although the system sizes are not large, we can draw the following qualitative
conclusions from these figures. First, the states evolve smoothly fromx = 0 to x = 1
with no abrupt changes in between. In each spin sector, the lowest-energy states atx = 0
are mainly composed of the lowest-energy states atx = 1, and vice versa. Finally, the
complex pattern of level crossings for small values ofS seems to suggest that the model is
nonintegrable forx not equal to 0 or 1.

5.2. Conformal field theory: a conjecture

It would be useful to understand the low-energy excitations of the model in terms of
conformal field theory; amongst other things, this would lead to a simpler derivation of
various correlation functions (see reference [12] and references therein). We would like to
advance a conjecture in this direction. Before doing that, we must consider the two limits
of the Hamiltonian (44) which are exactly solvable.

For x = 1, we have three uncoupled Majorana fermions with the same dispersion (15).
The low-energy excitations (modes with momentaq close to 0 orπ ) have velocityt = 4
and are governed by a conformal field theory which is an SU(2)2 Wess–Zumino–Witten
(WZW) model with central chargec = 3/2.

Forx = 0, the unphysical states decouple completely. The physical states (each of which
have an unphysical degeneracy of 2[L/2] due to the spinless Majorana fieldψn) are solvable
by the Betheansatz; the low-energy physical excitations have the velocityπJ/2 = 2π
and are governed by an SU(2)1 WZW conformal field theory withc = 1. The x = 0
limit is somewhat singular due to the complete decoupling of the unphysical states. Let us
therefore examine what happens ifx is nonzero but small. We can then apply degenerate
perturbation theory to first order inx. For instance, consider perturbation theory amongst
the 2[L/2] ground states which are degenerate forx = 0; we denote these states by the direct
product|90〉 ⊗ |α〉, where90 is the physical ground state andα can take 2[L/2] values. By
rewriting φn = σnψn and using the Betheansatzvalue

e ≡ 〈90|σn · σn+1|90〉 = −1.7726 (45)

we find that the first term in the Hamiltonian (13) can be written as the perturbation

V = −ixe
∑
n

ψnψn+1. (46)

This can be diagonalized by Fourier transforming, as

ψn =
√

2

L

∑
0<q<π

[c†qeiqn + cqe−iqn]. (47)

Then

V = −4xe
∑

0<q<π

sinqc†qcq +
2Lxe

π
. (48)

Thus the spinless sector with Z2 charge has low-energy excitations with velocity−4xe.
These are described by a conformal field theory withc = 1/2. Thus the spin and charge
excitations have completely different velocities.

The question now is what happens in between the two limits. Although our numerical
results are limited toL = 4 and 6, they suggest that both the spin sector (for instance,
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states withS > 0 and0 = 1) and the charge sector (states withS = 0 and0 = −1)
remain gapless for all values ofx; there does not appear to be a quantum phase transition at
any point betweenx = 0 and 1. It is then natural to conjecture that the low-energy sector
is generally described by the product of two conformal field theories which have different
velocities; the spin sector by an SU(2)1 WZW model withc = 1, and the Z2 charge sector
by a single Majorana fermion withc = 1/2. If this is correct, it would be somewhat
reminiscent of the one-dimensional Hubbard model away from half-filling; the low-energy
excitations of this are governed by the product of two conformal field theories which have
different velocities if the on-site interactionU 6= 0; the spin sector is again described by an
SU(2)1 WZW model while the U(1) charge sector is described by a Gaussian field theory
with c = 1 [12, 13].

6. The SO(N ) t–J model

It is possible to generalize thet–J model with three species of Majorana fermions to a model
with N species. In terms of an interpolating parameterx, we can write an SO(N)-symmetric
Hamiltonian in the form

H = −ix
∑
n

N∑
a=1

φanφ
a
n+1− (1− x)

∑
n

∑
16a<b6N

φanφ
b
nφ

a
n+1φ

b
n+1 (49)

where the operatorsφan satisfy the same anticommutation relations as in (2), except that
the flavour indicesa, b can now takeN values. The Hilbert space forL sites has the
dimensionality 2NL/2 if L is even. Forx = 1, we haveN noninteracting Majorana fermions
with the dispersionωq = 4 sinq; the low-energy excitations are therefore described by a
c = N/2 conformal field theory. We will now examine two special cases,N = 2 and
N = 4, for which the antiferromagnetic limitx = 0 is also well understood.

For N = 2, the model is equivalent to theXXZ spin-1
2 chain. This can be shown as

follows. We first combine two Majorana operators to produce an annihilation operator for
a spinless Dirac fermion:

dn = (−i)n

2
(φ1
n + iφ2

n). (50)

These satisfy the anticommutation relation

{dm, d†n} = δmn. (51)

In terms of these, the Hamiltonian takes the form

H = 2x
∑
n

(d†ndn+1+ d†n+1dn)+ 4(1− x)
∑
n

(
d†ndn −

1

2

)(
d
†
n+1dn+1− 1

2

)
. (52)

A Jordan–Wigner transformation from fermions to spin-1
2 operators then produces theXXZ

Hamiltonian [12]

H = x
∑
n

(σ xn σ
x
n+1+ σyn σ yn+1)+ (1− x)

∑
n

σ znσ
z
n+1. (53)

This model is exactly solvable by the Betheansatzfor all values ofx; it has a quantum
phase transition atx = 1/2. For 1/2 6 x 6 1, the model is gapless and is described by
a c = 1 Gaussian conformal field theory (the symmetry is enhanced from U(1) to SU(2)
at x = 1/2). For 06 x < 1/2, the model is gapped and has a Néel ground state with
long-range order.
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The case ofN = 4 is more interesting. Atx = 0, the model is a direct sum of two
antiferromagnetic spin-1

2 chains. To show this, let us first define the six generators of SO(4)
at each site:

Kab
n =

i

2
φanφ

b
n. (54)

Now we use the homomorphism SO(4) ' SO(3)× SO(3). This can be proved by defining
the linear combinations

Lx1n =
1

2
(K23

n +K14
n ) Lx2n =

1

2
(K23

n −K14
n )

L
y

1n =
1

2
(K13

n −K24
n ) L

y

2n =
1

2
(K13

n +K24
n )

Lz1n =
1

2
(K12

n +K34
n ) Lz2n =

1

2
(K12

n −K34
n ).

(55)

These generate two commuting SO(3) algebras, namely,

[Laαm, L
b
βn] = iδαβδmn

∑
c

εabcLcαm (56)

whereα, β = 1, 2 label the two algebras,a, b, c = x, y, z, and εxyz = 1. We can define
total angular momentum operators

Laα =
∑
n

Laαn. (57)

These commute with the Hamiltonian (49) for all values ofx.
At a single site, the Hilbert space is four dimensional; the four operatorsφa can be

chosen to be theγ -matrices used in Dirac’s theory of the electron. One can verify that

L2
1 =

3

8
(I− φ1φ2φ3φ4)

L2
2 =

3

8
(I+ φ1φ2φ3φ4).

(58)

It is convenient to choose a representation in which these two operators are diagonal in the
form of 2× 2 blocks:

L2
1 =

(
3/4 0
0 0

)
L2

2 =
(

0 0
0 3/4

)
.

(59)

Thus the upper two components of the Hilbert space transform as the( 1
2, 0) representation

of (L1, L2), while the lower two components transform as(0, 1
2). We now see that, for

x = 0, the Hamiltonian forL sites has the block-diagonal form

H =
(
H1 0
0 H2

)
(60)

where the HamiltoniansH1 andH2 act on two separate 2L-dimensional Hilbert spaces, each
corresponding to a spin-1

2 chain. Here

Hα = 2J
∑
n

Lα,n · Lα,n+1 (61)

for α = 1, 2. We already know that this can be solved by the Betheansatz; the block-
diagonal form of (60) implies that each eigenvalue will have a twofold degeneracy. Thus
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the SO(4)t–J model is exactly solvable at bothx = 0 and 1, and one can investigate how
the spectrum interpolates between the two. We will not pursue this here.

The Majorana fermions in the SO(4) model carry the spin quantum numbers(L1, L2) =
( 1

2,
1
2). In this respect they may be closer in spirit to the Faddeev–Takhtajan spinons (which

are spin-12 objects) than the Majorana fermions in the SO(3) model which carry spin 1. To
show this more precisely, let us define two Dirac fermion operators in the SO(4) model as

d1n = (−i)n

2
(φ1n + iφ2n)

d2n = (−i)n

2
(φ3n + iφ4n).

(62)

We can then verify that the particles created byd†1n and d†2n have the eigenvalues of the
total angular momentum operators(Lz1, L

z
2) equal to( 1

2,
1
2) and( 1

2,− 1
2) respectively. Thus,

for the purely antiferromagnetic model withx = 0, a fermion operator acting on the ground
state of, say, theL1-chain will produce states which transform as spin1

2 under the operators
L1; in addition, the states will carry a twofold internal quantum number coming fromL2.

It is interesting to note that the hopping term (proportional tot) in the SO(4) Majorana
model is identical to the hopping term in the Hubbard model of electrons. However, the
four-fermion interactions are very different in the two models.

Before ending this section, we would like to mention that a H–F analysis of the SO(N)

antiferromagnet has been performed in reference [14]. Their H–F decomposition differs from
the one that we have used in section 2. Consequently they obtain a much higher value for
the ground-state energy than us—namely, equation (10) forN = 3, and−JN(N − 1)/2π2

in general.

7. Discussion

We have studied a one-dimensional SO(3)-invariantt–J model with Majorana fermions.
At the pure-J end, this describes the nearest-neighbour antiferromagnetic spin-1

2 chain,
while at the pure-t end, we have three noninteracting fermions. We have done perturbative
calculations to low order in the four-fermion interaction. We have also studied the model
numerically by means of exact diagonalization of small systems. These studies provide a
new perspective on the excitations of the spin-1

2 chain by relating it in an ‘adiabatic’ and
rotationally invariant way to a model of free Majorana fermions. The low-energy excitations
of the spin-12 chain can be thought of as being made up of a small number of Majorana
fermions.

The field theoretic description of the low-energy excitations of the model remains
unclear. We have suggested that these excitations are governed by a product of two
conformal field theories which have entirely different symmetries. Numerical studies,
particularly finite-size scaling ones, of much larger systems are required to test this scenario.

The SO(N) generalization of our model also deserves further study. The SO(4)
case seems to be especially interesting because it provides yet another way of smoothly
connecting a model of free fermions to a spin-1

2 antiferromagnet. The SO(4) model may
also have applications to the problem of two coupled spin-1

2 chains [15].
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