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Abstract. We study a rotation-invariant Majorana fermion model in one dimension using
diagrammatic perturbation theory and numerical diagonalization of small systems. The model
is inspired by a Majorana representation of the antiferromagnetic%pinain, and it is similar

in form to ther—J model of electrons, except that the Majorana fermions carry spin 1 and Z
charge. We discuss the implications of our results for the low-energy excitations of thé spin-
chain. We also discuss a generalization of our model from three species of Majorana fermions
to N species; the SO(4) symmetric model is particularly interesting.

1. Introduction

In a recent paper [1], we used a representation of %pin terms of three species of
Majorana fermions [2, 3] in order to study the antiferromagnetic %pti:thrain. The Majorana
representation has an advantage over other representations (such as the Schwinger boson or
fermion representations [4, 5]) in that one does not have to impose a constraint on the total
particle number at each site (see however reference [6]). It is also rotation invariant unlike
the ‘drone fermion’ and the Holstein—Primakoff boson representations [7, 8].

For the spin% chain with isotropic nearest-neighbour interactions, the Majorana
representation followed by a rotation-invariant Hartree—Fock (H-F) analysis [1] leads to a
picture of the low-energy excitations of the spﬁrc—hain which is qualitatively similar to that
obtained by other methods [9-11]. In particular, we find that the excitations are described
by a two-parameter continuum in thie, w) space; for each momentug the low-energy
spectrum has a range of energiess if the excitations are made up of two particles (called
‘spinons’). We also get reasonable dynamic structure functions and susceptibilities at all
temperatures if we introduce some phenomenological structure functions. We should note
however that our Majorana fermions carry spin 1 unlike the ‘standard’ spinons witt’%spin

The positive features of the Majorana representation encourage us to study the
fluctuations about the H—F state of the séirehain. More generally, it seems to be
interesting to examine a strongly correlated Majorana fermion model in one dimension
and contrast its properties with much better-studied electronic systems like the Hubbard
model. Such an analysis would also be useful for other possible applications of Majorana
fermions such as the Kondo problem [2]. In this paper, we therefore study-thenodel
with Majorana fermions; the electronic version of this model has played a major role in
theories of strongly correlated systems like the high-temperature superconductors.
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The outline of our paper is as follows. In section 2, we briefly recall the Majorana
representation of spié and the H-F analysis of the antiferromagnetic chain given in our
earlier paper [1]. This motivates a study of the/ model which is introduced in section 3.

We present the Feynman rules for the propagator and the vertex, and compute the one-loop
correction to the propagator. In section 4.1, we compute the two-loop correction to the
propagator; we find the remarkable result that the on-shell correction is of the same form as
the tree-level dispersion relation. In section 4.2, we compute the two-loop correction to the
dynamic structure function. The result can be used to perturbatively improve the power law
of the equal-time correlation function and the ground-state energy of the%sxphain from

the values obtained at the H—F level. In section 4.3, we study the one-loop correction to the
vertex. In section 5, we discuss the symmetries ofrthe model and numerically analyse

the spectrum of small systems using exact diagonalization. In section 6, we generalize our
model from SO(3) to SQV), and we briefly examine the SO(4) case which is particularly
interesting. Finally, in section 7, we summarize our understanding of-thenodel.

2. Majorana fermions and the antiferromagnetic spin—; chain

At each siten, the spin operators, = o,/2 can be written in terms of the Majorana
operatorsp, as [1, 2, 3]

ol =—ile; ol =-igie) o =—id}0). &)

(We set Planck’s constant equal to 1.) The Hermitian opergip(svith a = x, y, z) satisfy
the anticommutation relations

{¢,‘:1v ¢Z} = 28mn8ab~ (2)

Note that there is a local ZZgauge invariance, since changing the sign¢ggf does not
affect S,. We will therefore say thatp, (or any odd power of it) carries a,Zcharge.
Let us define the trilinear and Hermitian objegt = —i¢ ¢n 3. Then b2, v¥,] =0, and
{Vm, ¥} = 28,,n. Under rotationse, ando, transform like vectors (spin-1 objects), while
¥, remains invariant. On the other hangl, carries a Z charge whileo, is Z, neutral.
Thus we have two different composite operaters,and/,,, which carry spin and charge
respectively.

For a system withL sites, it is known that the minimum possible dimension which
allows a representation of the form given in equations (1) and (2§52, where [L/2]
denotes the largest integer less than or equdl t®. For L sites with a spin% object at
each site, the Hilbert space clearly has dimensionThus the Majorana representation of
spin—; objects requires us to enlarge the space of states; the complete Hilbert space of states
is given by a direct product of a ‘physical’ space and an ‘unphysical’ one. The operators
o, act only on the physical states, while tiee mix up different unphysical states.

We now consider the Heisenberg antiferromagnetic chain with the Hamiltonian

H:JZS,,-Sn+1 3

whereJ > 0. We use periodic boundary conditio® .1 = Si1. The spectrum of (3)
is exactly solvable by the Bethansatz the ground-state energy per site for larfjeis
given by Eo/L = (—In2+ 1/4)J = —0.4431/. The lowest excitations are known to
be fourfold degenerate, consisting of a triplét £ 1) and a singlet{ = 0) [10]. The
excitation spectrum is described by a two-parameter continuum iigthe) space, where
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—n < q < m. The lower boundary of the continuum is described by the des Cloiseaux—
Pearson relation [9]

nJ .
(q) = —-Ising| (4)
while the upper boundary is given by
wu(q) = 7J sin% : (5)

We can understand this continuum by thinking of these excitations as being made up of two
spin—; objects (‘spinons’) with the dispersion [10]

nJ
ws(q) = > sing (6)

where O0< ¢ < m. A triplet (or a singlet) excitation with momentug is made up of
two spinons with momentg; and g2, such that O< ¢1 < g2 < 7, ¢ = q1 + q2, and
w(q) = ws(q1) + ws(q2)-
The Majorana analysis of this system proceeds as follows [1]. We write (3) in terms of
Majorana operators and then perform a H-F decomposition. Thus

H=_-- Z(¢X¢y¢”+1¢n+1 + cyclic permutations ofx, y, z))

~ 2 Zw Gria( B drs1) + (D i) B D

— @, D1 (D) ,,H) + cyclic permutations ofx, y, z)]. @)

For a rotation- and translation-invariant H—F analysis, we havei(¢; ¢, ,), whereg has
the same value for ahk anda = x, y, z. (Our earlier paper [1] follows slightly different
conventions.) The Fourier expansion@f is defined as

\f D g€ + bl ] ®)

O<g<m

where {b,,, bj,q/} = 84584 We will work with antiperiodic boundary conditions fop;
andevenvalues ofL in order to eliminate modes with equal to 0 andr. In equation (8),
q=2n(p—1/2)/L, with p=1,2,...,L/2. In the limit L — oo, we get

2

Z Z 8 8

H = . a)qb:;qbaq + 3LJ<Z — ;) (9)
a O<g<m

where the Majorana fermions have the dispersigr= v sing, with v = 2¢gJ. The value of
g is determined self-consistently to lge= 2/x. The H-F ground-state energy is therefore

Eonr _ 3 ;_ 03040 (10)
L 2
which is greater than the exact value mentioned above. The ‘spinon’ spectrum has the same
form as in (6), except that we get= 4J/x instead Ofv,y,r = 7w J/2.
We can go on to show that the Majorana fermion has spin 1, and a two-fermion state

therefore hasS = 0, 1, or 2 in general. However, the state createdSpy= > Siglan,
where O< ¢ < &, has the form

S0y =—i Y bl,bl, 10 (11)

T—q<k<m
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and hasS = 1. We thus obtain a two-parameter continuum of triplet excitations as in
equations (4) and (5), with a prefactof instead ofr/2.
Finally, the equal-time two-spin correlation function is given by

?1 forn=0
Gy = (OIS, - Sol0) = 2 (12)

This does not agree with the correct asymptotic behaviodt,ofvhich is known to oscillate
as(—1)"/n. In particular, the H-F static structure functicitg) = ), G,e " does not
diverge agy — m in contrast to the correcf(¢) which has a logarithmic divergence zat

(Note that we do ged_, G, = 0, as expected for a singlet ground state.) We will show
in section 4.2 that two-loop effects effectively reduce the power governing the asymptotic
decay from 2 to Ir5, which is somewhat closer to the correct value of 1. At the same
time, the ground-state energy per site is reduced fredB04Q/ to —0.3338/, which is

also closer to the Bethansatzvalue of —0.4431/.

One can now consider fluctuations about the H-F ground state by doing loop
calculations. However, instead of studying only the Hamiltonian (7) as is sufficient for
the spin% chain, it is useful to study a more general model which has the same structure
but has two parameters instead of one; the parameters are a hopping amplétndea
quartic interaction/. This is the subject of the following sections.

a,q,w a,—q,—w
(a)

a,q,0, EEREE]

8305Wg 8,0,0,
(b)

Figure 1. The propagator and vertex for the Majorama model.

3. The Majorana t—J model

We consider the Hamiltonian

—it J ’ . .
H=—- > it — 2 > (brdndr,1,.,4 + cyclic permutations ofx, y, 2)) (13)

with ¢ chosen to be positive, and we perform a perturbative expansion with the quartic
term. To begin the diagrammatic analysis, we generalize the Fourier expression (8) to the
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interaction picture field

2 .
¢2(’)=\/; Z ¢Ze|(qn7wqt) (14a)

—T<g<T
where
b, if0<g<m
¢t = { . _ (14b)
by,_g if —-mr <g<0
with
wg = tSing (15)
for all g. Then we obtain the propagator
(01T 95 (1)¢”,(0)[0) =G (g.1) =18 G(q. 1) (16a)
and
0 . i
iG(g,w) =i dr Gg,HNe”" = ————— 16b
(q, ®) /m (q,1) ooy + 0@ (160)

wheren is infinitesimal and positive, anél(q) =1if0 < ¢ <m and—-1if —7 < ¢ <O0.
For loop calculations, it is convenient to define a propagator even for valugsof lying
in the range fx, 7]. To do this, we first define a momentum= g + 2n7 where the
integern is chosen such thatr < ¢ < 7. Then wedefineG (¢, w) = G(g, w) using (16).
The propagator is shown by a solid line in figure 1(a). -

The vertex shown in figure 1(b) is obtained by Fourier transforming the quartic term in
(13). The Feynman rule for the vertex is found to be

I (a1, g1, w1; az, q2, w2; az, g3, w3; aa, g4, Wa)

= i(2n)28p<2i: q,-)S(Z w,~)4J cos(% ZQi>

(1 in( X
x [5“1“25“3“4 SIH<E(Ql - qz)) Sln(i(qa - 44)>

+ cyclic permutations ofay, g2; as, g3; as, q4)i| a7

where the spin indices; to a4 can take the values, y, z, and the momenta; to ¢4 need
not lie in the rangefx, =]. The periodics-function is defined as

o0
Spq)= ) 8(q —2m). (18)
n=—0oo
The expression in (17) is antisymmetric under the exchange of any two lahels, »;)
and (a;, g;, w;); it also vanishes if all of the indiceg are equal.

We now compute the simplest loop effect, namely, the one-loop contribution to the
propagator shown in figure 2(a). It is called a one-loop contribution because there is one
energy—momentum that we have to integrate over. To this orddr, ithe self-energy is
found to have the energy-independent form

4] .
2@ (g, w) = — sing (19)
T
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a,q,w Q a,—q,—w

(a)

a,q,w O a,—q,—w

(b)

Figure 2. The one- and two-loop contributions to the propagator.

where the superscrifgll) denotes the order of the loop. Thus the dispersion relation changes
from (15) to

4
wy = (t + %) sing. (20)

We will therefore use the expression (20) in the propagator (16) for all of the loop
calculations below. Note that we can recover the antiferromagnetic%sphain by setting
t = 0in (13); equation (20) then gives us precisely the H-F dispersion discussed in section 2.

4. Loop calculations

4.1. The two-loop contribution to the propagator

We will now compute the two-loop diagram shown in figure 2(b). The two energy
integrations can be easily carried out using the identities

/"X’da) 1 1 _ i
2T w—a+inw—B—in B—a+in

21
/OO dw 1 1 _0 (1)
2T w—a+inw—p+in
if « andp are real.
We then obtain the following expression for the self-energy:
4j2 [m (7 Sirf[g + 3(l + D)) sin’[ (1, — 1
2@, w) = __2/ diy di lq + 5+ )]sin 5 . 2)] (22)
T - J-x W+ @ + W, — Ol tipig +in

where we take the upper sidgim) in the denominator if
-7 <lI,l <0 and O<lhh+b+g<m
and we take the lower sigg-in) if

O<hi,b<m and —m<hh+l4+g<0.
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It is clear at this point that
2?(—q, —0) = 2%(q, »). (23)

This property of the self-energy can be shown to be true to all ordess iRurthermore,
@1 —q, w) = 2P (g, w). Now let us choose & g < 7 and find the on-shell dispersion
relation to order/2, namely,

aj\ .
w=<r+—>wm+2®@wy (24)
g

To this order inJ, we can set = (r + 4J /) sing in the second term on the right-hand
side of (24) or, equivalently, in the denominator of (22). We then find that the denominator
in (22) never crosses zero in the given range$, afndl,; thus we can drop the-in and

the integrals are purely real. We theamericallyfind that (22) has the remarkably simple
form

4J 4%
»@(q, — |si =—-0467————si 25
(q <t + - )smq) 220 1 47 ) sing (25)

for all ¢ in the range [0x]. Thus the dispersion relation to ordéf is
4y J?
=|{t+— —0189—— | sing. 26
@ < + b4 t+4J/rr> i (26)

We find it surprising that the form of the dispersion relation remains the same even at the
two-loops level, and suspect that this may be true to all orders in

4.2. The two-loop contribution to dynamic structure function
We will compute the two-spin correlation function
S.z(q, w) = Fourier transform of0| S5 (¢)S5(0)|0) (27)

to two loops. To any order, we can show that this function remains invariant under
(g, w) - (—q,—w). We can obtain the static structure function (equal-time correlation
function) S, (¢) by integrating:

[e ]
S(q) = f g_a) S.z(q, w)e”’ (28)
oo 2
and taking the limit — 0*. This is a function ofig|, so it is sufficient to compute it for
O<gq<m.
The lowest-order result for the correlation function is obtained from the one-loop
diagram in figure 3(a). After carrying out the energy integration, we obtain

i [ 1 .
- dll . |f0<ll,q—ll<ﬂ'
o 2r J ®—w, — wg_y, + 17 E—
S:(q, w) = : . 1 (29)
— d/ . if -7 <l,q—11<0.
27 J_, la)ll+a)q_ll—a)+lr) g A
For —m < g < m, we then obtain
sO(g) = 4. (30)
“ 27

The Fourier transform of this gives the spatial correlation function in (12).



Y (a)
(a) Xq1w1: z :quwz
Y%y z YAa@y

’ ’ >©<
RV z YQaWs

(b) (c)

Figure 3. The one- and two-loop contributions to theFigure 4. The one-loop contributions to the vertex.
two-spin correlation function.

At the two-loops level, we have to compute the diagram given in figure 3(b). After
performing the two energy integrations, we arrive at the expression

@ o[ ndldl '11 Io) | si 11 I
S (Q»w)zm ) 2 sin §(1+ 2) | sin 6]+§(1+ 2)
1

(ex —in)(ez —in)
1
- - if0 <—I1, -, lh+q,lb+g<m
o (e1 + I771(16’2 +1in) (31a)
- - if0 <y, —l,—(1+¢q),lb+qg<m
(ex — in)(ez + in) vl -t bt
-1

(ex+1in)(e2 —in)

if0 <y, b, —(1 +q),—(a+q)<m

if0 < —l1,lp,li+q,—(2+q) <m

where
1=+, — w4y (31)
e =+ W, — Wyyq- (31c)
We then get, for O< ¢ < 7,
J
SO =—55—1
D= arm @

(32)

a [a cosf(ly + Ip)] coslg — (1, +1
1(9) =/ / dy a, oSk Flalcosk — (b il
o Jo sinly + sinlp + sin(g — 1) + sin(g — I2)

We find analytically that/ (¢) vanishes ag — 0, and numerically that

/0 dg 1(q) =0. (33)

These are consistency checks following from the facts that the ground state is a singlet and
that the two-spin correlation at the same spatial point is equal4p\8e already know that
the one-loop correlation in equation (12) satisfies these checks.
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We now use equation (32) to derive some interesting numbers relating to the
antiferromagnetic spir%— chain. First of all, we can show analytically thatg) is finite

for all ¢, while I'(g) diverges logarithmically ay = 7 with coefficient 1; that is,
I'(g) = In|w — g| + nondivergent terms (34)
I(g=I1x)+(q—m)In|T —q| asq — 7.

At long distances, the leading term in the spatial correlation funafign= 3(0|S%S5|0)
takes the form

/n d_q I(g) coSgn) = — =" Inn + O(%) asn — oo. (35)
o T n

n?

After adding this to the one-loop result, we see that the long-distance correlation function
has an oscillatory term going as

G, = (=1)" 14

J
27r2n2|: n(t +4J/m) |nn+~-~] (36)

where the dots indicate contributions from more than two loops. If we assumethat
these higher-order terms come with the right numerical factors to turn the sum into an
exponential series, we see that the long-distance correlation decéay4)ds—*, where the
exponentx goes as
J
w(t+4J/m)
to orderJ. For the spin% chain, we must set = 0; this givesae = 1.75 to this order.
The second interesting number for the séirmhain which we can derive from (32) is
the ground-state energy per site; this is equal €, for r = 0. On numerically integrating
(32), we find the two-loop result

3 T
G? = 53 / dg 1(q) cosq = —0.0298 (38)
0

On adding this to the one-loop result, we get the vah@:3338/.

oa=2

(37)

4.3. The one-loop contribution to the vertex

For completeness, we will mention the one-loop correction to the vertex. Let us choose two
of the spin indices to be and two to bey. From (17), the zero-loop form of the vertex is
given by (27)? times the energy—-momentum-conserviifunctions multiplied by

. . 1 /1 /1
ir® =i4y COS(E lZ%) sm<§(ql —~ qz)) Sln(é(% — q4)>. (39)

The one-loop correctioli® (x, g1, w1; x, g2, w2 ¥, g3, 3} ¥, ga, wa) iS given by the sum
of the three diagrams shown in figure 4. On carrying out the energy integration, we find
that the contribution of figure 4(a) is

. 1 (1 (1 Tdoo 1
—i8J? COS(é Z%) sm(é(ql - 6]2)) Sln(é(% - 614)) / o S|n2|:l t5@t 6]2)}

1
Wltqitq, — W1 — 01 — @2+ 17
1

W+ w1+ W2 — Opyg4q, T 17

if0<Il,—(+q1+qg2) <m
(40)

ifO<—l,l+qg1+q<m.
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The contribution of figure 4(b) can be obtained from equation (40) by changing the
coefficient 8 to 16 and cyclically replacingg — g3 — g4 — ¢2 andw, — w3. The
contribution of figure 4(c) can be obtained from equation (40) by changing 8 to 16 and
replacingg, — g4 — g3 — g2 andwy — wa.

5. Symmetries and numerical results

5.1. Numerical results

We can numerically study the spectrum of our model by means of the exact diagonalization
of small systems. To do that, it is useful to know all the symmetries of the model. Some of
the conserved quantum numbers are the total §gimnd any one of its components, say,

S;, the total momenturng modulo 2r, and parityP = +1 which arises from the symmetry

of the Hamiltonian under

¢n g (_1)n¢L+l—n' (41)
In addition, there is a Zquantum number defined as follows. Consider

Yo - - Y if L is even
r= 2 (42)

iy - - Y if % is odd

satisfyingI'" = I'"! = I". This operator anticommutes with each of e and therefore
commutes with the Hamiltonian (13). Hence the eigenvaluE ef +1 is a good quantum
number. We willdefineI’ = 1 for the ground state of the-J/ model; we can ensure this
by introducing a minus sign in the definition (42) if necessary.

There are a few selection rules and energy degeneracies connecting some of these
guantum numbers. We will see below that the ground stateghas0O, and we choose
' = 1. We can now obtain various excited states by acting on it with a certain number
of Majorana operators as defined in (8). Each such operator carries a momgnthioh
is an odd multiple of 7/L, andI' = —1. It is therefore clear that all states must have
' = expigL); this eigenvalue is 1 o~1 depending on whether the state has an even or
odd number of Majorana fermions. Secondly, Majorana operators with momeatal
7w — g carry the same energy by parity. Thus states with an odd number of Majorana
operators, i.e. witi® = —1, must have an energy degeneracy between total momenta equal
to g andm — ¢g. States withl' = 1 must have an energy degeneracy between momgenta
and —q.

For a numerical study, it is more convenient to rewrite (13) in the form

1&, .
H = Z ;(_ltl//nl/fn-k—l +J)o, - Onil. (43)

As mentioned in section 2, we use periodic boundary conditiongrfoand antiperiodic
ones fory,,. We diagonalizeH in a basis consisting of a direct product of states of the
form |¥;) ® |;), such that the operatoes, and, act only on|¥;) and|«;) respectively.

In order to study the spectral flow from the pufenodel to the pure-model, we introduce

a parameter lying between 0 and 1, such thét= 4(1 — x) and¢ = 4x. Thus

N

Hx) = A—x —ixyY, Y1), - opi1. (44)
n=1
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10 ———T7—— 8 — 7
8 - (a) =0 6 - (b) 8=1 -
6 — —
4 — —
4 — —
2 - cr 7
=0 @0
C
74 — b — e
—4 ] —
76 — - — 3
a - —
-8 — -6
_10 O R AR N _8 P R N R R
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
8 T ‘ T ‘ T ‘ T ‘ T
(c) sS=2

Figure 5. Energies forL. = 4. x = 0 and 1 denote the purg-and purer models respectively.
Parts (a)—(c) show all of the energies for tofad= 0, 1, 2, respectively. The curves marked a—f
are discussed in the text.

We have obtained the eigenvalues of (44)foe 4 and 6, for 11 equally spaced valuesxof
from 0 to 1. All of the conserved quantities discussed above have discrete eigenvalues; hence
these remain invariant aschanges. Numerically, we only kept track of the eigenvalues of
total spinS =0,1,..., L/2 and totalS, = 0; whenever necessary, the eigenvalges®,
andT" can be deduced by continuity arguments from the exact analytical solutions known at
x = 1. The energy eigenvalues in eagfsector are shown in figures 5(a)-5(c) for= 4,
and the lowest few eigenvalues in eagisector are shown in figures 6(a)—6(d) for= 6.
We should remark here that the degeneracies of the various levels have not been shown,
and that we have not distinguished between true crossings and avoided crossings in these
figures.

To get a feeling for the elementary excitations, let us discuss the six low-lying states
marked a—f on the figures; these include the three lowest stabes with S = 0 in figures
5(a) and 6(a), the two lowest statesedwith S = 1 in figures 5(b) and 6(b), and the lowest
state f withS = 2 in figures 5(c) and 6(c). The energy dependence of these six states can
be seen to be quite similar fdr = 4 and 6. The ground state, marked a, is unique for all
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4 ‘ ‘ ‘ T T T T T T T T T

—14 | | | | —12 L | L | L | L 1 L

(c) s=2 s (d) s=3 |

Figure 6. The energy for, = 6. Parts (a)—(d) show the lowest 20 energiesSet 0, 1, 2, and
all the energies foS = 3, respectively. The curves marked a—f are discussed in the text.

values ofx (exceptx = 0 where it has a degeneracy df'2); it has spinS = 0, momentum
g =0, andI' = 1. The next two states in th& = 0 sector, marked b and c, haVe= 1
and —1 with degeneracies of 1 and 2 respectively; these two states exhibit a true level
crossing between = 0 and 1, so b is lower than ¢ near= 1 and vice versa near = 0.
The two states withs = 1, marked d and e, haveé = —1 and 1 with degeneracies of 2
and 1 respectively. These also exhibit a true level crossing, with d being lower than e near
x =1 and vice versa near = 0. Finally, the state witt§ = 2 marked f had” =1 and is
nondegenerate.

The composition of these six states can be easily understood at the noninteracting point
x = 1. At this point, the ordering of energies is given byxad < b=e=f < c. The
ground state a is the empty state. State d contains a single Majorana fermion with spin
1, with momentum equal to either/L or = — =/L; hence the double degeneracy. The
state b contains two fermions in a spin-0 combination, one with momentinand the
other with momentunx — 7 /L; hence the total momentum is. States e and f have the
same composition as b, except that they have spins 1 and 2 respectively. State ¢ has three
fermions in a spin-0 combination, two with momemtal andx — x/L, and the third with
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momentum either3/L or = — 3w /L; the double degeneracy is due to the twofold choice
for the third fermion. If we now move from = 1 tox = 0, all of these states get ‘dressed’
with an even number of fermions. At= 0, the energy orderingis@ab=c<d=e<f.
Although the system sizes are not large, we can draw the following qualitative
conclusions from these figures. First, the states evolve smoothly fragm0 tox = 1
with no abrupt changes in between. In each spin sector, the lowest-energy statesOat
are mainly composed of the lowest-energy states at 1, and vice versa. Finally, the
complex pattern of level crossings for small valuessaeems to suggest that the model is
nonintegrable for: not equal to 0 or 1.

5.2. Conformal field theory: a conjecture

It would be useful to understand the low-energy excitations of the model in terms of
conformal field theory; amongst other things, this would lead to a simpler derivation of
various correlation functions (see reference [12] and references therein). We would like to
advance a conjecture in this direction. Before doing that, we must consider the two limits
of the Hamiltonian (44) which are exactly solvable.

Forx = 1, we have three uncoupled Majorana fermions with the same dispersion (15).
The low-energy excitations (modes with momeagtalose to 0 orz) have velocityr = 4
and are governed by a conformal field theory which is anZ}JWess—Zumino—Witten
(WZW) model with central charge = 3/2.

Forx = 0, the unphysical states decouple completely. The physical states (each of which
have an unphysical degeneracy §f/2 due to the spinless Majorana fiejg,) are solvable
by the Betheansatz the low-energy physical excitations have the veloecity/2 = 2
and are governed by an $2J; WZW conformal field theory withc = 1. Thex = 0
limit is somewhat singular due to the complete decoupling of the unphysical states. Let us
therefore examine what happensrifis nonzero but small. We can then apply degenerate
perturbation theory to first order in. For instance, consider perturbation theory amongst
the 22/2 ground states which are degeneratexfes 0; we denote these states by the direct
product|¥) ® |or), whereW, is the physical ground state andcan take 2/2 values. By
rewriting ¢,, = o, ¥, and using the Bethansatzvalue

e = <\110|0'n . 0',1+1|\110> =-17726 (45)
we find that the first term in the Hamiltonian (13) can be written as the perturbation
V=—ixe) Yaluia (46)

This can be diagonalized by Fourier transforming, as

2 ) )
O<g<m
Then
2Lxe

V = —dxe Z Sinch;cq + . (48)
T

O<g<m

Thus the spinless sector with, £harge has low-energy excitations with velocityxe.
These are described by a conformal field theory wite 1/2. Thus the spin and charge
excitations have completely different velocities.

The question now is what happens in between the two limits. Although our numerical
results are limited tad. = 4 and 6, they suggest that both the spin sector (for instance,
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states withS > 0 andI" = 1) and the charge sector (states with= 0 andI" = —1)
remain gapless for all values of there does not appear to be a quantum phase transition at
any point betweenr = 0 and 1. It is then natural to conjecture that the low-energy sector
is generally described by the product of two conformal field theories which have different
velocities; the spin sector by an 8); WZW model withc = 1, and the Z charge sector

by a single Majorana fermion with = 1/2. If this is correct, it would be somewhat
reminiscent of the one-dimensional Hubbard model away from half-filling; the low-energy
excitations of this are governed by the product of two conformal field theories which have
different velocities if the on-site interactidii = 0; the spin sector is again described by an
SU(2); WZW model while the Y1) charge sector is described by a Gaussian field theory
with ¢ =1 [12, 13].

6. The SOE) t—J model

It is possible to generalize theJ model with three species of Majorana fermions to a model
with N species. In terms of an interpolating parametewme can write an SQV)-symmetric
Hamiltonian in the form

N
H=—ixY Y ¢lgt—A=x)) > ¢oir, 100, (49)
n a=1 n 1<a<b<N

where the operatorg? satisfy the same anticommutation relations as in (2), except that
the flavour indicesu, b can now takeN values. The Hilbert space fat sites has the
dimensionality 22/ if L is even. Fox = 1, we haveN noninteracting Majorana fermions
with the dispersiorw, = 4sing; the low-energy excitations are therefore described by a
¢ = N/2 conformal field theory. We will now examine two special cas¥s= 2 and
N = 4, for which the antiferromagnetic limit = O is also well understood.

For N = 2, the model is equivalent to thEXZ spin—; chain. This can be shown as
follows. We first combine two Majorana operators to produce an annihilation operator for
a spinless Dirac fermion:

_ (_i)ﬂ

dy = =@, +i). (50)
These satisfy the anticommutation relation
In terms of these, the Hamiltonian takes the form
1 1
H=2¢Y (didy+d,d,) + 41— x) Z(d;dn - 5) (dleHl - 5>. (52)

A Jordan—-Wigner transformation from fermions to séin)perators then produces tieX Z
Hamiltonian [12]

H=x Z(UJUJM +o0)0,,)+(1—x) Z 0707 . (53)

This model is exactly solvable by the Bethasatzfor all values ofx; it has a quantum
phase transition at = 1/2. For /2 < x < 1, the model is gapless and is described by
ac = 1 Gaussian conformal field theory (the symmetry is enhanced froiy td SU(2)
atx = 1/2). For 0< x < 1/2, the model is gapped and has &d\ ground state with
long-range order.
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The case ofN = 4 is more interesting. At = 0, the model is a direct sum of two
antiferromagnetic spir%—chains. To show this, let us first define the six generators of SO(4)
at each site:

i
K" = S (54)

Now we use the homomorphism ) >~ SO(3) x SO(3). This can be proved by defining
the linear combinations

1 o1
L =SB KE) Ly = S K

, 1 1
L, = E(K,}S — K2 Ly = E(1(,}3+ K24 (55)
1 1
L = E(1<,}2+ K3 L = E(1<,}2 — K34,
These generate two commuting SO(3) algebras, namely,

(L. LY,] = i8apdn Y _ € LS, (56)

wherea, 8 = 1, 2 label the two algebrasy, b, ¢ = x, y, z, ande** = 1. We can define
total angular momentum operators

L=Y1s, (57)

These commute with the Hamiltonian (49) for all valuesrof
At a single site, the Hilbert space is four dimensional; the four operatbresan be
chosen to be the-matrices used in Dirac’s theory of the electron. One can verify that

3
L3 = g (1 = d16203p0)
3 (58)
L5 = 50+ d1926300).

It is convenient to choose a representation in which these two operators are diagonal in the
form of 2 x 2 blocks:

L2 <3/4 o)
1={o o
(59)

Thus the upper two components of the Hilbert space transform a(%tl@& representation
of (L1, L), while the lower two components transform &% %). We now see that, for
x = 0, the Hamiltonian for sites has the block-diagonal form

_(H1 O
=% 2) ©
where the Hamiltonian&l; and H, act on two separate-2dimensional Hilbert spaces, each
corresponding to a spié-chain. Here

HDt =2J Z La.n * La,n+l (61)

for « = 1,2. We already know that this can be solved by the Bethsatz the block-
diagonal form of (60) implies that each eigenvalue will have a twofold degeneracy. Thus
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the SO(4)—J model is exactly solvable at both= 0 and 1, and one can investigate how
the spectrum interpolates between the two. We will not pursue this here.

The Majorana fermions in the SO(4) model carry the spin quantum nunmbers.,) =
(%, %). In this respect they may be closer in spirit to the Faddeev—Takhtajan spinons (which
are spin% objects) than the Majorana fermions in the SO(3) model which carry spin 1. To
show this more precisely, let us define two Dirac fermion operators in the SO(4) model as

(=" ,
= (P10 +igp2n)

L s+ i),
We can then verify that the particles createddiy and d;n have the eigenvalues of the
total angular momentum operatais;, L3) equal to(3, 1) and (3, —3) respectively. Thus,
for the purely antiferromagnetic model with= 0, a fermion operator acting on the ground
state of, say, thé.;-chain will produce states which transform as s@innder the operators
L,; in addition, the states will carry a twofold internal quantum number coming frem

It is interesting to note that the hopping term (proportionad)ton the SO(4) Majorana
model is identical to the hopping term in the Hubbard model of electrons. However, the
four-fermion interactions are very different in the two models.

Before ending this section, we would like to mention that a H—F analysis of thi&/ 5O
antiferromagnet has been performed in reference [14]. Their H-F decomposition differs from
the one that we have used in section 2. Consequently they obtain a much higher value for
the ground-state energy than us—namely, equation (10)fer 3, and—JN(N — 1)/2r?
in general.

dy,
(62)

doy =

7. Discussion

We have studied a one-dimensional SO(3)-invariaimt model with Majorana fermions.

At the pured end, this describes the nearest-neighbour antiferromagnetic%spimin,

while at the pure-end, we have three noninteracting fermions. We have done perturbative
calculations to low order in the four-fermion interaction. We have also studied the model
numerically by means of exact diagonalization of small systems. These studies provide a
new perspective on the excitations of the séinhain by relating it in an ‘adiabatic’ and
rotationally invariant way to a model of free Majorana fermions. The low-energy excitations
of the spin% chain can be thought of as being made up of a small number of Majorana
fermions.

The field theoretic description of the low-energy excitations of the model remains
unclear. We have suggested that these excitations are governed by a product of two
conformal field theories which have entirely different symmetries. Numerical studies,
particularly finite-size scaling ones, of much larger systems are required to test this scenario.

The SQN) generalization of our model also deserves further study. The SO(4)
case seems to be especially interesting because it provides yet another way of smoothly
connecting a model of free fermions to a séir&ntiferromagnet. The SO(4) model may

also have applications to the problem of two coupled s}a'rrhains [15].
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